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Summary

I in Coq, formalize 2⁄3 of

Cut Elimination in Coalgebraic Logics

Dirk Pattinson∗, Dept. of Computing, Imperial College London

Lutz Schröder†, DFKI Bremen
and Dept. of Comput. Sci., Univ. Bremen

Abstract

We give two generic proofs for cut elimination in propositional modal
logics, interpreted over coalgebras. We first investigate semantic coher-
ence conditions between the axiomatisation of a particular logic and
its coalgebraic semantics that guarantee that the cut-rule is admissi-
ble in the ensuing sequent calculus. We then independently isolate a
purely syntactic property of the set of modal rules that guarantees cut
elimination. Apart from the fact that cut elimination holds, our main
result is that the syntactic and semantic assumptions are equivalent in
case the logic is amenable to coalgebraic semantics. As applications
we present a new proof of the (already known) interpolation property
for coalition logic and newly establish the interpolation property for
the conditional logics CK and CK + ID .

1 Introduction

Establishing the admissibility of the cut rule in a modal sequent calculus
often allows proving many other properties of the particular logic under
scrutiny. If the sequent calculus enjoys the subformula property, the con-
servativity property is immediate: each formula is provable using only those
deductive rules that mention exclusively operators that occur in the formula.
As a consequence, completeness of the calculus at large immediately entails
completeness of every subsystem that is obtained by removing a set of modal
operators and the deduction rules in which they occur. Moreover, cut-free
sequent systems admit backward proof search, as the logical complexity of a
formula usually decreases when passing from the conclusion to the premise

∗Partially supported by EPSRC grant EP/F031173/1
†This work forms part of the DFG project Generic Algorithms and Complexity Bounds

in Coalgebraic Modal Logic (SCHR 1118/5-1)

1

I formalisation of syntax, semantics and 2 cut-elimination theorems
for (generic) propositional multi-modal logic

I K as example, (work in progress on coalition logic)

I revealed only 4 errors (which were easy to correct)

I see http://askra.de/science/coalgebraic-cut
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Motivation

Verified Cut Elimination

I Cut elimination is an important meta property of a logic

I . . . but is tricky to prove

I . . . and proofs are rarely ever spelled out

Generic Nature of Coalgebraic Modal Logics

I results apply to every logic that fits into the framework

I formalising the preconditions suffices
to obtain formalised soundness, completeness and cut-elimination results

This work is the basis for

I certified validity checkers extracted from the completeness proof
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Cut Elimination

Semantic: Given a proof for Γ

I soundness shows validity of Γ

I cut-free completeness shows the existence of a cut-free proof

Syntactic: Shift cut upwards, replacing, for instance,

` ¬A,¬B,C
(¬∧)

` ¬(A ∧ B),C
` A ` B (∧)` A ∧ B

(cut)` C

by

` ¬A,¬B,C ` A
(cut) ` ¬B,A ` B

(cut)` C
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Outline

I Introduction

I Formalization in Coq
I syntax
I proofs
I semantics

I Selection of Major Results

I Some Interesting Bits
I classical vs. intuitionistic logic
I 1 of the 4 problems found during the formalisation

I Conclusion
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Coalgebraic Modal Logics: Formulas

Multi-modal Propositional Modal Logic

I parametric on modal similarity type Λ
which provides the set of modal operators and their arity

I formulas: p, f ∧ g , ¬f , ♥(f1, . . . , fn)
for some set of propositional variables V , p ∈ V and ♥ of arity n

Record modal operators : Type := { operator : Type; arity : operator → nat }.
Variable (V : Type) (L : modal operators).

Inductive lambda formula : Type :=
| lf prop : V → lambda formula
| lf neg : lambda formula → lambda formula
| lf and : lambda formula → lambda formula → lambda formula
| lf modal : forall(op : operator L),

counted list lambda formula (arity L op) → lambda formula.

I counted list A n are lists over A of length n
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Coalgebraic Modal Logics: Rules I

Fixed Propositional Rules

(Ax)` Γ, p,¬p
` Γ,A ` Γ,B

(∧)` Γ,A ∧ B

` Γ,¬A,¬B
(¬∧)

` Γ,¬(A ∧ B)

` Γ,A
(¬¬)` Γ,¬¬A

` Γ,A ` ∆,¬A
(cut)` Γ,∆

Definition sequent : Type := list lambda formula. (* modulo reordering *)
Record sequent rule : Type := {assumptions: list sequent; conclusion: sequent}.
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Coalgebraic Modal Logics: Rules II

Logic Specific 1-Step Rules for Modalities

` a11, . . . , ¬b11, . . . · · · ` ak1 , . . . , ¬bk1 , . . .
` ♥1(. . .), . . . , ¬♥′1(. . .), . . .

Subject to Additional Conditions

I non-empty conclusion

I arguments for the modal operators in the conclusion
are unnegated propositional variables

I all variables in the assumptions appear in the conclusion

I proofs may contain substitution instances of 1-step rules
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Coalgebraic Modal Logics: Proofs

Proofs are finite trees build from rules and assumptions

Inductive proof(rules : set sequent rule)(hypotheses : set sequent)
: sequent → Type :=

| assume : forall(gamma : sequent),
hypotheses gamma → proof rules hypotheses gamma

| rule : forall(r : sequent rule), rules r →
dep list sequent (proof rules hypotheses) (assumptions r) →

proof rules hypotheses (conclusion r).

I proof R H G is the type of proof trees for sequent G
using rules R and hypotheses H

I dep list A T [a1; . . . ; an] is a inhomogeneous list of n elements
where the i-th element has type T ai

I very concise formalisation relying on dependent types
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Formalized Results

Variable T : functor.

Lemma cut free completeness :
forall(enum V : enumerator V)(LS : lambda structure)

(rules : set sequent rule)(osr : one step rule set rules)(s : sequent),
classical logic →
non trivial functor T →
one step cut free complete (enum elem enum V) LS rules osr →
valid all models (enum elem enum V) LS s →

provable (GR set rules) empty sequent set s.
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Formalized Results II

Variable op eq : eq type (operator L).
Variable v eq : eq type V.

Theorem syntactic admissible cut :
forall(rules : set sequent rule),

countably infinite V →
one step rule set rules →
absorbs congruence rules →
absorbs contraction op eq v eq rules →
absorbs cut op eq v eq rules →

admissible rule set (GR set rules) empty sequent set is cut rule.
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Application to K

using the rule set
` ¬p1, . . . ,¬pn, p0
` ¬�p1, . . .¬�pn,�p0

Theorem k semantic cut :
classical logic →

admissible rule set (GR set k rules) (empty sequent set VN KL) is cut rule.

Theorem k syntactic cut :
admissible rule set (GR set k rules) (empty sequent set VN KL) is cut rule.

Lemma k nd equiv : forall(s : sequent VN KL),
provable (GRC set k rules) (empty sequent set VN KL) s ↔

provable (GRC set is k n rule) k d axioms s.
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Classical vs. Intuitionistic Logic

Classical object logic of Pattinson & Schröder

I rules (Ax)` Γ, p,¬p
and

` Γ,A
(¬¬)` Γ,¬¬A

I defined disjunction: A ∨ B
def
= ¬(¬A ∧ ¬B)

Coq’s intuitionistic meta logic

I A ∨ ¬A is not a tautology, but ¬(¬A ∧ ¬¬A) is

I ¬¬A→ A is not a tautology, but A→ ¬¬A is

Expect, that some results of Pattinson & Schröder are not provable in Coq

I making Coq classical: Require Classical.

I I prefer

Definition classical logic : Prop := forall(P : Prop), ¬ ¬ P → P.
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The need for classical reasoning

. . . depends on disjunction and the semantic of sequents

I disjunction is syntactic sugar: A ∨ B
def
= ¬(¬A ∧ ¬B) in the object logic

I semantic of sequents (J−KS) is defined via the semantic of formulas (J−KF )

JΓKS
def
= J

∨
ΓKF

JA,BKS
def
= JA ∨ BKF = J¬(¬A ∧ ¬B)KF

Double negation translation has surprising effects

I (Ax)` Γ, p,¬p
is sound, because ¬(¬p ∧ ¬¬p) is tautological

I
` Γ,A ` ∆,¬A

(cut)` Γ,∆
is only sound when assuming classical logic,

because A ∧ ¬(¬B ∧ ¬¬A)→ B is not a tautology
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Wrong

Substitution Lemma

Lemma (original substitution lemma)

Assume

I Γ is provable with rules of modal rank n (i.e., Γ has rank n)

I σ is a substitution that maps to formulas of modal rank k

Then Γσ is provable with rules of modal rank n + k,
using the additional assumptions Axk , where

Axk
def
= {Γ,A,¬A | Γ and A of modal rank k}

Proof.

Take the original proof, substituting ¬pσ, pσ, Γ from Axk for (Ax)` Γ, p,¬p
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using the additional assumptions Axk , where

Axk
def
= {Γ,A,¬A | Γ and A of modal rank k}

Example

I Γ = ♥(p), p,¬p of modal rank n = 1, provable by (Ax)

I σ : p 7→ ♥(p) of modal rank k = 1

I but Γσ = ♥(♥(p)),♥(p),¬♥(p) of rank n + k = 2
is not in Ax1
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Substitution Lemma II

Error seems to break the main theorems

I subst. lemma is used inside induction proofs on the modal rank

I Γ of rank 1, σ of rank k

I reduces Γσ of rank k + 1 to Axk of rank k

I thus permitting the use of the induction hypothesis

Use Axn+k
σ = {Γ, pσ,¬pσ | Γ of modal rank n + k}

I “binding” of σ makes other proofs simpler

I need to use weakening before applying the induction hypothesis

I this way, original proofs remain valid
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Conclusion I

Summary

I soundness, completeness, cut-elimination results
for generic multi-modal propositional logic in Coq

I modal logic K as example

I very concise formalisation of syntax, semantics, proofs
relying on dependent types (without predicates for well-formedness)

I only 4 non-trivial problems revealed (+1 for coalition logic)

I the usual peer-review process does not ensure correctness

Future Work

I coalition logic (work in progress) and other example logics

I remaining content of the paper,
especially interpolation theorem and interpolants

I change formalisation to extract certified tautology checkers
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Conclusion II

Complexity

I 36,000 lines, 400 definitions, 1300 theorems in Coq

I for 19 propositions, 7 definitions, 3 examples on ≈ 31 pages

Side Effects

I parallel library compilation for Coq in Proof General

I proof tree visualisation
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File Dependencies
sets

slice

classic

lists image

functions

substitution

functor

castmisc

dsets

all

rule_sets

weakening one_step_conditionspropositional_rules build_prop_proofk_syntax

cut_properties

inversion generic_cut

complete

admissibility

prop_cut

syntactic_cut

k_absorb

mixed_cut

osr_cut

modal_formulas rules

list_set

list_support

formulas

build_proof

some_neg_form

propositional_formulas

propositional_models

step_semanticspropositional_sound

semantics

k_semantics

sound

propositional_completeness

some_nth

reorderdep_lists

some_neg

list_multiset

ck

sequent_support renaming

plain_prop_modfactor_subst

assoc

backward_substitution propositional_properties

absorb

prop_mod

contraction

factor_two_subst

k_nd

k_sound_complete

Hendrik Tews Cut elimination in Coq Tableaux 2013 22 / 23



Introduction Formalization Results Interesting Bits Conclusion

Coalgebraic Modal Logics: Semantics

I a functor T describes the type of frames

I behaviour of modal operators is given by (fibred) predicate liftings:
J♥K :

(
(P1 ⊆ X ), . . . , (Pn ⊆ X )

)
7→ (Q ⊆ TX )

I a frame (model) is given by a coalgebra γ : X −→ TX
together with a valuation τ : V −→ P(X )

I formula semantics yields a subset of the state space J−Kcτ ⊆ X :

JpKcτ = τ(p)

JA ∧ BKcτ = JAKcτ ∩ JBKcτ
J¬AKcτ = X \ JAKcτ

J♥(A1, . . . ,An)Kcτ = γ−1
(
J♥K(JA1Kcτ , . . . , JAnKcτ )

)
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