
Combining Mechanized Proofs and Model-Based
Testing in the Formal Analysis of a Hypervisor

Hanno Becker Juan Manuel Crespo Jacek Galowicz Ulrich Hensel
Yoichi Hirai César Kunz Keiko Nakata Jorge Luis Sacchini

Hendrik Tews Thomas Tuerk

Formal Methods group of an unnamed company

November 11th, 2016

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 1 / 19

The company that must not be named

2012 decision to invest in microkernel based virtualization and
formal methods for a disruptive technology change

2013 hiring started in the microkernel valley in Dresden, Germany

2014 office opening and press releases

2015 ≈ 25 employees in Dresden, including 8 PhD’s on formal methods

2016 confidence in disruptive technology diminished in sync with the fall of stocks

2016 office shutdown on August 15 without prior notice (no press release)

My role there

I office manager

I principal formal methods architect

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 2 / 19

System Architecture

S
ec

u
ri

ty
 c

ri
ti

ca
l

p
ar

t

(T
C

B
)

Guest OS

(Windows) Application

payload

VMM virtualization layer

Nova microhypervisor

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 3 / 19

Project Goals

I microkernel based virtualization

S
ec

u
ri

ty
 c

ri
ti

ca
l

p
ar

t

(T
C

B
)

Guest OS

(Windows) Application

payload

VMM virtualization layer

Nova microhypervisor

I formally verified security guarantees
for the TCB

I for security aware industry leaders

I they hopefully set a trend for everybody

I guarantees might be a competitive advantage

I about 20 Kloc C++ in TCB

I partial verification results only for first releases
(e.g., incomplete refinement chain)

I formal verification focused on microkernel only

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 4 / 19

Our Vision was

S
ec

u
ri

ty
 c

ri
ti

ca
l

p
ar

t

(T
C

B
)

Application

payload

Guest OS

(Windows)

VMM virtualization layer

Nova microhypervisor

Attacker

Guest Attacker Security

An attacker present inside the guest can neither

I directly modify the memory outside the guest,

I nor change the behaviour of any component outside the guest.

Formally proved for the source code of the TCB.

Started verification 2014 with working on Nova.

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 5 / 19

Our Vision was

S
ec

u
ri

ty
 c

ri
ti

ca
l

p
ar

t

(T
C

B
)

Application

payload

Guest OS

(Windows)

VMM virtualization layer

Nova microhypervisor

Attacker

Guest Attacker Security

An attacker present inside the guest can neither

I directly modify the memory outside the guest,

I nor change the behaviour of any component outside the guest.

Formally proved for the source code of the TCB.

Started verification 2014 with working on Nova.

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 5 / 19

Our Vision was

S
ec

u
ri

ty
 c

ri
ti

ca
l

p
ar

t

(T
C

B
)

Application

payload

Guest OS

(Windows)

VMM virtualization layer

Nova microhypervisor

Attacker

Guest Attacker Security

An attacker present inside the guest can neither

I directly modify the memory outside the guest,

I nor change the behaviour of any component outside the guest.

Formally proved for the source code of the TCB.

Started verification 2014 with working on Nova.

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 5 / 19

Process Challenges

Industrial Software Development with Formal Verification

I development and formal verification in parallel

I development driven by feature requests and performance concerns
(i.e. not by ease of formal verification)

I reprioritization, plan changes

I verification of a moving target

I release planning independent of formal verification results

I C++ 11 expert level sources

Verification Process Requirements

I provide partial results early on

I partial results must have significance for potential customers

I 6-9 month milestones, again with meaningful results

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 6 / 19

Process Challenges

Industrial Software Development with Formal Verification

I development and formal verification in parallel

I development driven by feature requests and performance concerns
(i.e. not by ease of formal verification)

I reprioritization, plan changes

I verification of a moving target

I release planning independent of formal verification results

I C++ 11 expert level sources

Verification Process Requirements

I provide partial results early on

I partial results must have significance for potential customers

I 6-9 month milestones, again with meaningful results

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 6 / 19

Our Approach

Nova hypervisor

Nova abstract model

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 7 / 19

Our Approach

Nova hypervisor

− simple authority confiment

− kernel memory protection

Nova abstract model

proof

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 7 / 19

Our Approach

Nova hypervisor

− simple authority confiment

− kernel memory protection

conformance testing

(model based tests with

600K tests until Q1/2015)

random test case generation

Nova abstract model

proof

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 7 / 19

Our Approach (cont.)

Restrictions

I sequential model, sequential conformance testing

I conformance testing on modified hypervisor

Benefits

I testing catches errors outside the scope of the model

I Independent from C++ sources

I first verification results after 9 month (27 person month)

I some flexibility on feature changes (proofs can be postponed)

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 8 / 19

Conformance Testing Framework

Testcase
Generation

Nova

hypercall

trace

h
y
p
er

ca
ll

 r
es

u
lt

s

fi
n
al

 k
er

n
el

 s
ta

te

h
y
p
er

ca
ll

 r
es

u
lt

s

fi
n
al

 k
er

n
el

 s
ta

te

Abstract

Model

handcrafted
regression tests

Nova hypervisor

testing task

compile

?

w
eb

 f
ro

n
te

n
d

code extraction Executable

Abstract

Model

Coq

qemu

Nova Hypervisor

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 9 / 19

Conformance Testing Framework

Testcase
Generation

Nova

hypercall

trace

h
y
p
er

ca
ll

 r
es

u
lt

s

fi
n
al

 k
er

n
el

 s
ta

te

h
y
p
er

ca
ll

 r
es

u
lt

s

fi
n
al

 k
er

n
el

 s
ta

te

Abstract

Model

handcrafted
regression tests

Nova hypervisor

testing task

compile

?

w
eb

 f
ro

n
te

n
d

code extraction Executable

Abstract

Model

Coq

qemu

Nova Hypervisor

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 9 / 19

Conformance Testing Framework

Testcase
Generation

Nova

hypercall

trace

h
y
p
er

ca
ll

 r
es

u
lt

s

fi
n
al

 k
er

n
el

 s
ta

te

h
y
p
er

ca
ll

 r
es

u
lt

s

fi
n
al

 k
er

n
el

 s
ta

te

Abstract

Model

handcrafted
regression tests

Nova hypervisor

testing task

compile

?

w
eb

 f
ro

n
te

n
d

code extraction

binary search for shortest failing trace

Executable

Abstract

Model

Coq

qemu

Nova Hypervisor

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 9 / 19

Security Property: Authority Confinement

c

d

Resources

Consider

I a capability c , providing
access rights to some ressource
(memory, device, . . .)

I a partitioning of the processes into
two sets: trusted and untrusted

I an arbitrary execution s q

If

I the untrusted processes cannot access c in state s

I the untrusted processes do not create c

I no trusted process delegates c to an untrusted one

then the untrusted processes cannot access c in state q.

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 10 / 19

Security Property: Authority Confinement

c

trusted d untrusted

Resources

Consider

I a capability c , providing
access rights to some ressource
(memory, device, . . .)

I a partitioning of the processes into
two sets: trusted and untrusted

I an arbitrary execution s q

If

I the untrusted processes cannot access c in state s

I the untrusted processes do not create c

I no trusted process delegates c to an untrusted one

then the untrusted processes cannot access c in state q.

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 10 / 19

Security Property: Authority Confinement

c

trusted d untrusted

Resources

Consider

I a capability c , providing
access rights to some ressource
(memory, device, . . .)

I a partitioning of the processes into
two sets: trusted and untrusted

I an arbitrary execution s q

If

I the untrusted processes cannot access c in state s

I the untrusted processes do not create c

I no trusted process delegates c to an untrusted one

then the untrusted processes cannot access c in state q.

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 10 / 19

Security Property: Authority Confinement

c

trusted d untrusted

Resources

✗
✗

✗

✗

Consider

I a capability c , providing
access rights to some ressource
(memory, device, . . .)

I a partitioning of the processes into
two sets: trusted and untrusted

I an arbitrary execution s q

If

I the untrusted processes cannot access c in state s

I the untrusted processes do not create c

I no trusted process delegates c to an untrusted one

then the untrusted processes cannot access c in state q.

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 10 / 19

Security Property: Kernel Memory Safety

Note

User thread control blocks (UTCB) are allocated in the kernel but
accessible in deprivileged processes.

Kernel Memory Safety

In all reachable system states, all memory capabilities of
all (deprivileged) processes point either to

I a UTCB, or

I to memory outside the kernel.

���
���
���

���
���
���

����
����
����

����
����
����

kernel UTCB

✗
✗

user accessible

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 11 / 19

Work after Q1/2015

− simple authority confiment

− kernel memory protection

Nova kernel

Nova abstract model

+ memory allocation

refinement

via

proof

conformance testing

(12.8 mil tests)

proof

refinement

Nova abstract model

Additionally

I experiments with sound static analysis

I coverity methodology

I fuzzing

I model checking critical algorithms

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 12 / 19

Work after Q1/2015

− simple authority confiment

− kernel memory protection

Nova kernel

Nova abstract model

+ memory allocation

refinement

via

proof

conformance testing

(12.8 mil tests)

proof

refinement

Nova abstract model

Additionally

I experiments with sound static analysis

I coverity methodology

I fuzzing

I model checking critical algorithms

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 12 / 19

Total number of randomly generated test cases

2M

4M

6M

8M

10M

12M

14M

04/16 05/16 06/16 07/16 08/16 09/16

total tests successful failing

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 13 / 19

Break down of failing test cases

200K

400K

600K

800K

04/16 05/16 06/16 07/16 08/16 09/16

hopefully fixed
trace problem

unclassified
model

other Nova
double killing

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 14 / 19

Regression tests

 0

 5000

 10000

 15000

 20000

09/15 11/15 01/16 03/16 05/16 07/16 09/16

total success

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 15 / 19

Failing regression tests

 0

 10

 20

 30

 40

 50

 60

 70

 80

09/15 11/15 01/16 03/16 05/16 07/16 09/16

failing
Nova

model
unclassified

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 16 / 19

Bugs found

Nova kernel

code review 10
conformance testing 18
total 28

I many boring corner cases

I crashes

I arbitrary kernel memory access

I races

Virtualization layer

coverity 42
code review 41
fuzzing 11
sound static analyzer 6
other 6
total 106

≈ 1 Bug per FM person month on average

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 17 / 19

Lessons learned
Model based testing

I conformance testing was effective, but a lot of work (kernel testing is hard)

I Heisenberg effects on the borderline of invalidating test results

I need to plan in advance:
I time frame for fixing uninteresting bugs
I rerunning outdated tests for bug-fix validation

I need to support testing without the model

Other

I top-down approach fulfilled expectations
first verification results long before product demonstrator

I Maybe other properties are much more relevant?
I VMM does not introduce bugs in the virtualized OS
I correctness of parts outside the TCB are necessary to avoid guest OS crashes

e.g., virtual APIC

I need more quick tools/methods for improving code quality

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 18 / 19

Lessons learned
Model based testing

I conformance testing was effective, but a lot of work (kernel testing is hard)

I Heisenberg effects on the borderline of invalidating test results

I need to plan in advance:
I time frame for fixing uninteresting bugs
I rerunning outdated tests for bug-fix validation

I need to support testing without the model

Other

I top-down approach fulfilled expectations
first verification results long before product demonstrator

I Maybe other properties are much more relevant?
I VMM does not introduce bugs in the virtualized OS
I correctness of parts outside the TCB are necessary to avoid guest OS crashes

e.g., virtual APIC

I need more quick tools/methods for improving code quality

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 18 / 19

System Architecture (slide copied)

S
ec

u
ri

ty
 c

ri
ti

ca
l

p
ar

t

(T
C

B
)

Guest OS

(Windows) Application

payload

VMM virtualization layer

Nova microhypervisor

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 19 / 19

