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The company that must not be named

2012 decision to invest in microkernel based virtualization and
formal methods for a disruptive technology change

2013 hiring started in the microkernel valley in Dresden, Germany

2014 office opening and press releases

2015 ≈ 25 employees in Dresden, including 8 PhD’s on formal methods

2016 confidence in disruptive technology diminished in sync with the fall of stocks

2016 office shutdown on August 15 without prior notice (no press release)

My role there

I office manager

I principal formal methods architect
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Project Goals

I microkernel based virtualization
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I formally verified security guarantees
for the TCB

I for security aware industry leaders

I they hopefully set a trend for everybody

I guarantees might be a competitive advantage

I about 20 Kloc C++ in TCB

I partial verification results only for first releases
(e.g., incomplete refinement chain)

I formal verification focused on microkernel only
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Our Vision was
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Attacker

Guest Attacker Security

An attacker present inside the guest can neither

I directly modify the memory outside the guest,

I nor change the behaviour of any component outside the guest.

Formally proved for the source code of the TCB.

Started verification 2014 with working on Nova.
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Process Challenges

Industrial Software Development with Formal Verification

I development and formal verification in parallel

I development driven by feature requests and performance concerns
(i.e. not by ease of formal verification)

I reprioritization, plan changes

I verification of a moving target

I release planning independent of formal verification results

I C++ 11 expert level sources

Verification Process Requirements

I provide partial results early on

I partial results must have significance for potential customers

I 6-9 month milestones, again with meaningful results
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Our Approach

Nova hypervisor

Nova abstract model
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Our Approach

Nova hypervisor

− simple authority confiment

− kernel memory protection

Nova abstract model

proof
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Our Approach

Nova hypervisor

− simple authority confiment

− kernel memory protection

conformance testing

(model based tests with

600K tests until Q1/2015)

random test case generation

Nova abstract model

proof
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Our Approach (cont.)

Restrictions

I sequential model, sequential conformance testing

I conformance testing on modified hypervisor

Benefits

I testing catches errors outside the scope of the model

I Independent from C++ sources

I first verification results after 9 month (27 person month)

I some flexibility on feature changes (proofs can be postponed)
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Security Property: Authority Confinement

c

d

Resources

Consider

I a capability c , providing
access rights to some ressource
(memory, device, . . . )

I a partitioning of the processes into
two sets: trusted and untrusted

I an arbitrary execution s  q

If

I the untrusted processes cannot access c in state s

I the untrusted processes do not create c

I no trusted process delegates c to an untrusted one

then the untrusted processes cannot access c in state q.
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Security Property: Kernel Memory Safety

Note

User thread control blocks (UTCB) are allocated in the kernel but
accessible in deprivileged processes.

Kernel Memory Safety

In all reachable system states, all memory capabilities of
all (deprivileged) processes point either to

I a UTCB, or

I to memory outside the kernel.
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kernel UTCB

✗
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user accessible
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Work after Q1/2015

− simple authority confiment

− kernel memory protection

Nova kernel

Nova abstract model

+ memory allocation

refinement

via

proof

conformance testing

(12.8 mil tests)

proof

refinement

Nova abstract model

Additionally

I experiments with sound static analysis

I coverity methodology

I fuzzing

I model checking critical algorithms
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Total number of randomly generated test cases
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Break down of failing test cases
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Regression tests
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Failing regression tests
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Bugs found

Nova kernel

code review 10
conformance testing 18
total 28

I many boring corner cases

I crashes

I arbitrary kernel memory access

I races

Virtualization layer

coverity 42
code review 41
fuzzing 11
sound static analyzer 6
other 6
total 106

≈ 1 Bug per FM person month on average
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Lessons learned
Model based testing

I conformance testing was effective, but a lot of work (kernel testing is hard)

I Heisenberg effects on the borderline of invalidating test results

I need to plan in advance:
I time frame for fixing uninteresting bugs
I rerunning outdated tests for bug-fix validation

I need to support testing without the model

Other

I top-down approach fulfilled expectations
first verification results long before product demonstrator

I Maybe other properties are much more relevant?
I VMM does not introduce bugs in the virtualized OS
I correctness of parts outside the TCB are necessary to avoid guest OS crashes

e.g., virtual APIC

I need more quick tools/methods for improving code quality

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 18 / 19



Lessons learned
Model based testing

I conformance testing was effective, but a lot of work (kernel testing is hard)

I Heisenberg effects on the borderline of invalidating test results

I need to plan in advance:
I time frame for fixing uninteresting bugs
I rerunning outdated tests for bug-fix validation

I need to support testing without the model

Other

I top-down approach fulfilled expectations
first verification results long before product demonstrator

I Maybe other properties are much more relevant?
I VMM does not introduce bugs in the virtualized OS
I correctness of parts outside the TCB are necessary to avoid guest OS crashes

e.g., virtual APIC

I need more quick tools/methods for improving code quality

Hendrik Tews et. al. Combining Mechanized Proofs. . . Nov 11, 2016 18 / 19



System Architecture (slide copied)
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