
Mirohypervisor Veri�ation within the Robin Projet(featuring a Nizza arhiteture demonstration)Hendrik TewsSoS group, Radboud University Nijmegenhttp://www.s.ru.nl/∼tewsSupported by the European Union through PASR grant 104600.



Contents

I. IntrodutionII. Nizza seurity arhitetureIII. DemonstrationIV. Veri�ation approah in the Robin projetV. Spotlights on detailsVI. Goals & Problems

H. Tews: Robin Microhypervisor verification Slide 2



Robin ProjectObjetive: Create an open robust omputing platformEnjoy the latest bells and whistles of the internet.Without having to worry about the seurity of online banking.4 Partners:
• Tehnial University Dresden (Germany)Development/Implementation of the open robust omputing infrastruture

• Radboud University NijmegenFormal methods: spei�ation and veri�ation of some parts
• Seunet Seurity Networks AG (Germany)Case study

• ST Miroeletronis (Frane)Port the platform to an embedded system (PDA)Sponsored by the EU through PASR
H. Tews: Robin Microhypervisor verification Slide 3



Contents

I. IntrodutionII. Nizza seurity arhitetureIII. Fiaso/L4Linux/Nipiker DemonstrationIV. Veri�ation approah in the Robin projetV. Spotlights on detailsVI. Goals & Problems

H. Tews: Robin Microhypervisor verification Slide 4



MotivationCon�it between Seurity and Usebility

• mobile phone/PDA
– mobile webbrowser
– store personal data, used for monetary transations

• PC at home
– Internetbanking, private orrespondene
– Internet aess onsoleSeurity onsiderations:

• losed system
• minimal softwareUsability onsiderations:
• supported OS with large appliation base (Windows, Linux)
• freely install/update software (from untrusted soures)For private use: Disonnet from the internet or give up seurity.

H. Tews: Robin Microhypervisor verification Slide 5



Nizza Architecture

hardware enforced
protection boundary

legacy
OS

legacy
OS
encapsulated

GUI
minimal secure secure

storage
. . .virtual machine

monitor

encrypt
decrypt

trusted
viewer

trusted
applications

loader

signature
generation

micro hypervisor

conventional hardware

trusted servers

user mode

kernel mode

trusted computing
base (TCB)

ad
dr

es
s 

sp
ac

e 
bo

un
da

ry

H. Tews: Robin Microhypervisor verification Slide 6



Properties

• Use several OS instanes in parallel (web-browser instane, editor instane)

• Every OS instane has only limited aess and (typially) annot aess otherOS instanes
• reboot web-browser instane if ontaminated to badly

• editor instane an only talk to the enryption module

• Even if attaker ompromises installation media he annot do anything

• data typed in the editor OS is ompletely seured,
• trusted viewer protets against trojan horses in the editor instane

• Even most of the hardware an be driven by enapsulated lagay OS instanes

• denial of servie attaks are the only problem(but it requires an extraordinary attaker to deny serviefor more than a few hours)

H. Tews: Robin Microhypervisor verification Slide 7



Contents

I. IntrodutionII. Nizza seurity arhitetureIII. DemonstrationIV. Veri�ation approah in the Robin projetV. Spotlights on detailsVI. Goals & Problems

H. Tews: Robin Microhypervisor verification Slide 8



Comparison with XenSome history
1997 MkLinux: Linux on the the OSF Mah3 mirokernel, too slow

1997 L4Linux, paravirtualized Linux: The Performene on miro-kernel-based Systemsonly 5% performane penalty
2003 XenoLinux: Xen and the Art of VirtualizationComparisonL4, L4Linux Xenonly Linux paravirtualisation, miro-hypervisorproviding full virtualization underway full virtualizationstand-alone appliation and OS guests only OS guestsuse ase:many ooperating modules, RPC several, mainly independent guest OS'es;no RPCIPC lateny heavily optimised IPC throughput optimiseddevie drivers are separated by address spaeboundaries Domain 0 ontrols all deviessparse miro-kernel interfae rih hypervisor interfaelots of side hannels ?
H. Tews: Robin Microhypervisor verification Slide 9



Contents

I. IntrodutionII. Nizza seurity arhitetureIII. DemonstrationIV. Veri�ation approah in the Robin projetV. Spotlights on detailsVI. Goals & Problems

H. Tews: Robin Microhypervisor verification Slide 10



Challenges of kernel VerificationC++
• OS kernels are typially written in C or C++ enrihed with assembly

• standard is very vague (are there negative numbers in signed int?)

• type system is not sound (even without typeasts)Spei�s of kernel Veri�ation
• need type asts (for memory management)
• has to deal with hardware registers that modify the behaviour of the CPU

– CR3 (page diretory base register
– EFLAGS
– global desriptor table, interrupt desriptor table
– task segment
– feature ontrol register CR0, CR4

• need for assembly (IRET, INVLPG, . . . )
• strange programming environment

– virtual memory, but the same piee of memory might be visible at di�erent addresses

– virtual memory mapping is manipulated by the kernel itself (even for kernel memory)

– strange side e�ets (memory mapped devies)
H. Tews: Robin Microhypervisor verification Slide 11



Why C++?

Why not write the kernel in a real language (say Haskell)and verify that?
• For some reason, kernels written not in C/C++ only have limited impat.

• Beause of memory alloation and hardware aess one always has to esapeto assembly or C (for kernel programming).
• The runtime system for a safe language is bigger than a whole C++ miro-hypervisor.

• C++ veri�ation adds some additional researh hallenges.
H. Tews: Robin Microhypervisor verification Slide 12



Robin Verification Approach

• use an independent kernel(urrently Nova)
• soure ode veri�ation (of C++)
• develop denotational semantis for asubset of C++
• denotational semantis maps C++ intoHOL
• denotational semantis is based on ahardware model and a semantis of C++data types
• proof properties in the interativetheorem prover PVS

hypervisor source code
(Semantics of the)

Hardware model
Semantics of
data types

hypervisor interface specification

Φdata_types , Φhardware ⊢ ϕ(hypervisor)

• denotational semantis relies on state transformers
State −→

ok :

State ⊎

pagefault :

State × Page_fault_info ⊎
hang :

1 ⊎
fatal :

1 ⊎ · · ·

• spei�ation for the hypervisor interfae developed separately
• base spei�ation in pseudo ode (simple set theory with lots of syntati sugar)

H. Tews: Robin Microhypervisor verification Slide 13



Data Flow in the verificationhardwaremodel data typeaxiomatizationC++ soureswith annotations Semantis ompiler logialannotations
semantisin HOL PVS

externalspei�ation

• PVS: an interative theorem prover for higher-order logi
• semantis ompiler translates C++ soures into PVS
• program semantis � is evaluated � on top of the hardware and the data type model

• veri�ation goals are handwritten or inluded in the soures as speial annotations
H. Tews: Robin Microhypervisor verification Slide 14



Contents

I. IntrodutionII. Nizza seurity arhitetureIII. DemonstrationIV. Veri�ation approah in the Robin projetV. Spotlights on detailsVI. Goals & Problems

H. Tews: Robin Microhypervisor verification Slide 15



Hardware Model

• stritly speaking the hardware model is an underspei�ed hardware spei�ationsuh that IA32 is a model of it
• provide basi operations for program semantis(reading/writing typed variables in virtual memory)

• physial memory, paging, virtual memory
• TLB
• memory mapped devies
• registers
• provides system state and base operations for soure-ode semantis:

– writing in memory
– reading in memory (whih might hange the memory state: aessed bits, page faults)

– speial hardware operations: registers (CR3), bits in ontrol registers, . . .

• provides a hierarhy of memory interfaes: physial memory, virtual memory,VM with page fault handler
• relies on data type semantis for hardware data types (suh as page diretory entries)

• striter hek for nonsense/errors than the real hardware(e.g., fail when a string is enountered in the page diretory)
H. Tews: Robin Microhypervisor verification Slide 16



Semantics of data types

• highly underspei�ed spei�ation for eah data type

• three levels: uninterpreted data, interpreted data, pod

• onsisteny proved with PVS theory re�nement

• interfae
size : nat,

valid? : [list[Byte], Address -> bool]

uidt : Uninterpreted_data_type,

to_byte : [Data, Address -> list[Byte]],

from_byte : [list[Byte], Address -> lift[Data]]

• leaves the objet representation of the data ompletely open
• the objet representation might ontain type tags (permitted by the C++ standard)

• only funtions for onversion to and from the objet representation
• onverting from the objet representation fails for invalid data
• result of interpreting a string as an integer annot be determined (not even that the on-version does not rash)
• permitted asts must be given as axioms or additional assumptions
• thereforeNormal termination proves dynami type orretness

H. Tews: Robin Microhypervisor verification Slide 17



Plain MemoryTask
• ommon abstration of the various memory interfaes for the majority of the ode

• deals with virtual memory aliasing(two di�erent virtual address regions are mapped to the same physial memory)

• provides shortut lemmas for well-behaved variable aessDe�nition, tehnially
• invariant parameterised with a set of read-only and a set of read-write addresses withadditional properties
• a set of system states that is invariant under all memory read and writes within these setsof addresses
• memory aesses within the address sets terminate normally (no page fault ours in�nitelyoften)

• only expeted hanges (no virtual memory aliasing)
• in summary Memory as one would expet

H. Tews: Robin Microhypervisor verification Slide 18



Contents

I. IntrodutionII. Nizza seurity arhitetureIII. DemonstrationIV. Veri�ation approah in the Robin projetV. Spotlights on detailsVI. Goals & Problems

H. Tews: Robin Microhypervisor verification Slide 19



Robin Verification GoalsGoals that we would like to attempt

• absene of the following hardware errors

– reserved bit violations
– aessing features not present in the model (suh as physial address extension)

– TLB inonsisteny
– unaligned aess to memory mapped hardware devies (suh as the Advaned Pro-grammable Interrupt Controller)

• dynami type orretness
– absene of onventional type errors
– TLB errors (missing INVLPG)
– virtual memory aliasing
– alloation errors (two variables overlap)

• only kernel ode runs in kernel modeGoals urrently out of reah
• address spae separation

• attaker does not get aess to data in a di�erent address spae
H. Tews: Robin Microhypervisor verification Slide 20



Open Problems

Unhanged Objet Code
• Goal: on every memory write produe a proof obligation:the kernel objet ode is not hanged
• work around: prove separately that kernel objet ode remains unhanged

Connetion between the objet ode and the semantis of the soure ode

• assume orret ompiler(s) urrently
H. Tews: Robin Microhypervisor verification Slide 21



Conclusion

• Nizza arhiteture solves on�it between seurity and usability

• veri�ation of the underlying miro-hypervisor is takled in the SoS group

• use denotational semantis of (a subset of) C++to prove simple orretness properties
H. Tews: Robin Microhypervisor verification Slide 22


