Nizza —
a trustworthy, secure, open, and verifiable platform

Hendrik Tews
SoS group, Radboud University Nijmegen

http://www.cs.ru.nl/~tews

Supported by the European Union through PASR grant 104600.

Contents

. Introduction

II. Nizza security architecture
II1. Demonstration
IV. Operating system kernel verification

V. Verification approach in the Robin project

H. Tews: Nizza — a Trustworthy Open Platform Slide 2

Robin Project

Objective: Create an open robust computing platform

Enjoy the latest bells and whistles of the internet.
Without having to worry about the security of online banking.

4 Partners:

e Technical University Dresden (Germany)
Development/Implementation of the open robust computing infrastructure
e Radboud University Nijmegen
Formal methods: specification and verification of some parts
e Secunet Security Networks AG (Germany)
Case study
e ST Microelectronics (France)

Port the platform to an embedded system (PDA)

Sponsored by the EU through PASR

H. Tews: Nizza — a Trustworthy Open Platform Slide 3

Contents

|. Introduction
II. Nizza security architecture

I1l. Fiasco/L4Linux/Nipicker Demonstration
V. Operating system kernel verification

V. Verification approach in the Robin project

H. Tews: Nizza — a Trustworthy Open Platform Slide 4

Motivation

Conflict between Security and Usebility
e mobile phone/PDA

— mobile webbrowser

— store personal data, used for monetary transactions
e PC at home
— Internetbanking, private correspondence
— Internet access console
Security considerations:
e closed system
e minimal software
Usability considerations:

e supported OS with large application base (Windows, Linux)

e freely install /update software (from untrusted sources)

For private use: Disconnect from the internet or give up security.

H. Tews: Nizza — a Trustworthy Open Platform

Slide 5

Nizza Architecture

trusted computing

base (TCB)
|
|
trusted signature I
applications | generation | egacy : g
____________ _ E legacy
: oS '8
|
trusted | 1 | encrypt encapsulated : g OS
viewer | ! | decrypt £
: |
I

trusted servers

|
loader : minimal secure
I GUI
|
|

|

|

virtual machine :
monitor | U

|

user mode hardware enforced
protection boundary

| |
| |
: secure :
| Storage |
| |
| |

kernel mode

micro hypervisor

conventional hardware

H. Tews: Nizza — a Trustworthy Open Platform Slide 6

Properties

e Use several OS instances in parallel (web-browser instance, editor instance)

e Every OS instance has only limited access and (typically) cannot access other
OS instances

reboot web-browser instance if contaminated to badly

editor instance can only talk to the encryption module

Even if attacker compromises installation media he cannot do anything

data typed in the editor OS is completely secured,

trusted viewer protects against trojan horses in the editor instance
e Even most of the hardware can be driven by encapsulated lagacy OS instances

e denial of service attacks are the only problem
(but it requires an extraordinary attacker to deny service
for more than a few hours)

H. Tews: Nizza — a Trustworthy Open Platform Slide 7

Contents

|. Introduction

II. Nizza security architecture

I1l. Demonstration

V. Operating system kernel verification

V. Verification approach in the Robin project

H. Tews: Nizza — a Trustworthy Open Platform Slide 8

Comparison with Xen

Some history

1997 MkLinux: Linux on the the OSF Mach3 microkernel, too slow

1997 L4Linux, paravirtualized Linux: The Performence on micro-kernel-based Systems
only 5% performance penalty

2003 Xenolinux: Xen and the Art of Virtualization

Comparison
L4, L4Linux Xen
only Linux paravirtualisation, micro-hypervisor full virtualization
providing full virtualization underway
stand-alone application and OS guests only OS guests
use case: several, mainly independent guest OS’es;
many cooperating modules, RPC no RPC
IPC latency heavily optimised IPC throughput optimised
device drivers are separated by address space Domain 0 controls all devices
boundaries
sparse micro-kernel interface rich hypervisor interface
lots of side channels ?

H. Tews: Nizza — a Trustworthy Open Platform Slide 9

Contents

|. Introduction
II. Nizza security architecture

[11. Demonstration

IV. Operating system kernel verification

V. Verification approach in the Robin project

H. Tews: Nizza — a Trustworthy Open Platform Slide 10

Program Verification

Verification

e treat program as mathematical object
e describe its behaviour in a precise way (semantics)

e prove properties about the behaviour
Verification is different from bug hunting

e verification proves some property and thus the absence of a certain class of errors
e complete verification is very costly and rarely ever performed (in the present)

e use other techniques to eliminate the largest number of bugs with limited resources
Different kinds of semantics

e operational semantics
e axiomatic semantics (Hoare Logic)

e denotational semantics

— every piece of the program is translated into denotation

denotations are functions that capture all the behaviour
— denotations are composed to get a denotation of the whole program

one reasons about the denotations

H. Tews: Nizza — a Trustworthy Open Platform Slide 11

Challenges of kernel Verification

C++

e OS kernels are typically written in C or C++ enriched with assembly
e standard is very vague (are there negative numbers in signed int?)

e type system is not sound (even without typecasts)

Specifics of kernel Verification

need type casts (for memory management)

has to deal with hardware registers that modify the behaviour of the CPU

— CR3 (page directory base register
EFLAGS
— global descriptor table, interrupt descriptor table

— task segment
— feature control register CR0, CR4

need for assembly (IRET, INVLPG, ...)

strange programming environment

— virtual memory, but the same piece of memory might be visible at different addresses
— virtual memory mapping is manipulated by the kernel itself (even for kernel memory)

H. Tews: Nizza — a Trustworthy Open Platform Slide 12

Contents

|. Introduction
II. Nizza security architecture
[1l. Demonstration

IV. Operating system kernel verification

V. Verification approach in the Robin project

H. Tews: Nizza — a Trustworthy Open Platform Slide 13

Robin verification approach

hypervisor interface specification

(Semantics of the)
hypervisor source code

Hardware model Semantics of

’7 data types

(I)data_type& (I)hardware = gp(hyperm’sor)

H. Tews: Nizza — a Trustworthy Open Platform Slide 14

Robin verification approach

Semantics of data types

as it says, semantics of unsigned, void x, ...
supports type casts in a very modular way

let verification fail on wrong type casts (or virtual memory errors)

Hardware model

abstract model of 1A32 architecture

provide basic operations for program semantics (reading/writing typed variables in virtual
memory)

models protected mode with paging enabled (including all details that might cause pro-
gramming errors, such as the TLB)

don’t model unnecessary stuff (virtual x86 mode, physical address extension, .. .)

however, do monitor all relevant flags and switches (let the verification fail if, e.g., paging

is disabled)
use the semantics of data types for hardware data types (such as page directory entries)

stricter check for nonsense/errors than the real hardware (e.g., fail when a string is encoun-
tered in the page directory)

H. Tews: Nizza — a Trustworthy Open Platform Slide 15

Data Flow in the verification

hardware data type
model axiomatization

C-++ sources === | Semantics compiler #s?rr]n;notifs= PVS

with annotations

logical
annotations external
specification

e PVS: an interactive theorem prover for higher-order logic
e semantics compiler translates C++ sources into PVS
e program semantics “is evaluated” on top of the hardware and the data type model

verification goals are handwritten or included in the sources as special annotations

H. Tews: Nizza — a Trustworthy Open Platform Slide 16

Robin Verification Goals

Goals that we would like to attempt
e absence of the following hardware errors

— reserved bit violations

accessing features not present in the model (such as physical address extension)
— TLB inconsistency

— unaligned access to memory mapped hardware devices (such as the Advanced Pro-
grammable Interrupt Controller)

e dynamic type correctness

e only kernel code runs in kernel mode

Goals currently out of reach

e address space separation

e attacker does not get access to data in a different address space

H. Tews: Nizza — a Trustworthy Open Platform Slide 17

Conclusion

e Nizza architecture solves conflict between security and usability

e verification of the underlying micro-hypervisor is tackled at Radboud University

e use denotational semantics of (a subset of) C++
to prove simple correctness properties

H. Tews: Nizza — a Trustworthy Open Platform Slide 18

